
xudf
eXtended User Definable Format

version 0.1.0

Takashi Uneyama

Copyright c© 2005 Takashi Uneyama
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Foundation.

i

Table of Contents

1 Introduction . 1

2 Install xudf . 3

3 About XUDF (eXtended User Definable
Format) . 5
3.1 Primitive Data Types . 5
3.2 Definition and Value of Variables . 5
3.3 Arraies and Structures . 6
3.4 Class Definitions . 7
3.5 Select Definitions . 8
3.6 Headers . 8
3.7 Records . 9

4 The XUDF Preprocessor (xudfpp) 11
4.1 Overview of the XUDF preprocessor (xudfpp) 11
4.2 Introduction to (xudfpp) . 11
4.3 Invoking xudfpp . 12
4.4 Macro Processing by xudfpp . 13

4.4.1 \begin{...} and \end{...} (blocks) 13
4.4.2 \include{...} (inclusion of file) 14
4.4.3 \define{...}{...} (macro definition) 14
4.4.4 <KEY> and <ID> (variable types) 14
4.4.5 , (commas) . 15
4.4.6 /* ... */ and // ... (comments) 15

5 The XUDF to Script Language Converter
(xud2pl,xudf2py,xudf2rb,xudf2lua) 17
5.1 Overview of the XUDF to Script Language Converter

(xudf2pl,xudf2py,xudf2rb,xudf2lua) 17
5.2 Introduction to the XUDF to Script Language Converter . . 17
5.3 Invoking xudf2pl,xudf2py,xudf2rb,xudf2lua. 19

6 The UDF to Script Language Converter
(ud2pl,udf2py,udf2rb,udf2lua) 21
6.1 Overview of the UDF to Script Language Converter

(udf2pl,udf2py,udf2rb,udf2lua). 21
6.2 Introduction to the UDF to Script Language Converter . . . 21
6.3 Invoking udf2pl,udf2py,udf2rb,udf2lua 23

ii eXtended User Definable Format

7 Complete Syntax for XUDF 25

GNU GENERAL PUBLIC LICENSE 29
Preamble . 29
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 30
How to Apply These Terms to Your New Programs 34

Concept Index . 37

Chapter 1: Introduction 1

1 Introduction

The XUDF (eXtended User Definable Format) is an extension of the OCTA UDF (User
Definable Format) for describing the input/output data for various simulators of computa-
tional physics. Although the philosophy of the OCTA UDF is interesting, but to read/write
the OCTA UDF file, one needs the proprietary library. This avoids developments of free
software / open source software. We hope the libraries and utilities to handle these for-
mat to be free. Besides, the official OCTA UDF handling library is not fast and difficult
for users. The OCTA UDF syntax itself has some ambiguity and this confuses the users.
The XUDF is written to be a free, open utility to handle the OCTA UDF files. You can
convert OCTA UDF files into XUDF files, and then you can convert them into some script
languages and handle it by ease.

Currently the XUDF provides the preprocessor for XUDF macro (and also for OCTA
UDF) and the converters for script languages (Lua, Python, Ruby, Perl). You can also
convert the OCTA UDF into the script languases directly, and then use it by your simulator.

NOTICE THAT THE XUDF IS NOTHING TO DO WITH OCTA NOR JAPAN
RESEARCH INSTITUTE UNLIMITED. XUDF IS COMPLETELY UNOFFICIAL
PACKAGE. ALSO NOTICE THAT THE XUDF IS DISTRIBUTED UNDER THE GNU
GENERIC PUBLIC LICENSE WHICH IS NOT COMPATIBLE WITH THE LICENSE
OF OCTA.

2 eXtended User Definable Format

Chapter 2: Install xudf 3

2 Install xudf

You can build ans install xudf from the source package. xudf is using GNU Auto-
conf/Automake, thus you can build and install it easily, just like the other free softwares.

First, extract the source package xudf-0.1.0.tar.gz. To extract it, do
$ zcat xudf-0.1.0.tar.gz | tar xvf -

or if you are using GNU tar, do
$ tar zxvf xudf-0.1.0.tar.gz

Now change the directory to the source tree and bild it.
$ cd xudf-0.1.0
$./configure
$ make

If the make is completed without errors, then install it.
$ su -
make install

By default, xudf will be installed under /usr/local. For further information, invoke
the following command.

$./configure --help

This will print the options for the configure script.

4 eXtended User Definable Format

Chapter 3: About XUDF (eXtended User Definable Format) 5

3 About XUDF (eXtended User Definable
Format)

In this section, we show a simple XUDF files as examples. The XUDF files are similar
to the OCTA UDF files since the XUDF is based on the OCTA UDF.

3.1 Primitive Data Types

The XUDF supports following primitive data types.

int A 32-bit integer.

long A 32-bit integer (this is the same as int).

short A 16-bit integer.

float A single-precision floating point real number.

single A single-precision floating point number (this is the same as float).

select A selectable, enumerated string (this is the same as string).

double A double-precision floating point number.

string A string, sequence of characters.

KEY A string specifier for the variable (actually this is the same as string).

ID A integer specifier for the variable (actually this is the same as int).

3.2 Definition and Value of Variables

First, we show the simplest XUDF file.
def {

i: int
}

data {
i: 123

}

This XUDF file means that we define the int type variable i and its value is 123. The
definition of the variables are in the def block;

def {
name: type

...
}

where name is the name of the variable and type is the type of the variable. The value
for the variable is set in the data block;

data {
name: value

...
}

where value is data which is set to the variable name.

6 eXtended User Definable Format

3.3 Arraies and Structures

More complex data structures, arraies and structures can be used in the XUDF.
def {

a[]: int
s: {

b: double
c: string

}
}

data {
a[]: [1 2 3 4 5]
s: {

1.234
"abcde"

}
}

In this case, a is an array of int and s is a structure of which members are b (double
type) and c (string type). The array type variable can be defined by adding [] after its
name (multidimensional array can be defined by adding [] twice or more). The structure
type variable can be defined by combining variable definitions.

def {
array_name[]: type

structure_name: {
name: type

...
}

}

The data value definitions for an array and a structure is as follows.
data {

array_name[]: [data1, data2, data3, ...]
structure_name: { data1, data2, data3, ... }

}

The array type or the structure type can be nested. The following is a bit complicated
but collect XUDF.

def {
a[]: {

b: {
c: int
d[]: double

}
e[][]: int

}
}

Chapter 3: About XUDF (eXtended User Definable Format) 7

data {
a[]: [

{ {
1
[1.0 2.0 3.0]
}
[[1.0 2.0]

[3.0 4.0]]
}
{ {

2
[4.0 5.0 6.0]
}
[[5.0 6.0]

[7.0 8.0]]
}

]
}

3.4 Class Definitions

The class definition is useful if there are many structures of which member is the same.
def {

class vector: {
x: double
y: double
z: double

}

r: vector
v: vector

}

data {
r: { 1.0 2.0 3.0 }
v: { 4.0 5.0 6.0 }

}

In this XUDF file, we define a new class named vector. The calss definition is just
like the structure variable definition except for that there are class specifier class. The
defined class can be used as the variable type, like the other primitive variable types (int,
double, ...).

def {
class class_name: {

name: type

...

8 eXtended User Definable Format

}
}

3.5 Select Definitions

The select type variable is enumerated string type variable.

def {
b: select {

"true"
"false"

}
}

data{
b: "true"

}

In this example XUDF, b is a select variable which can take the value "true" or
"false". The select variable can be treated as a variant of string variable.

The definition and set of select variables is as follows.

def {
name: select {

"item1"
"item2"
...

}
}

data {
name: "defined_item"

}

where "defined item" is one of "item1", "item2",

3.6 Headers

We can store the data or the information about the simulation in the special block, the
header block.

header {
def {

EngineType: string
EngineVersion: string
IOType: string
ProjectName: string
Comment: string

}

Chapter 3: About XUDF (eXtended User Definable Format) 9

data {
EngineType : "my simulator"
EngineVersion : "0.1.0"
IOType : "in"
ProjectName : "my project"
Comment : "an input file for my simulator 0.1.0"

}
}

We put the def block and the data block in the header block. The variables which can
be defined in the def block in the header block is as follows.

EngineType
(string)
The type (or name) of the simulation engine which uses the file.

EngineVersion
(string)
The versioin of the simulation engine.

IOType (string)
The input/output type for the file ("in" for input, "out" for output, "in/out"
for both input and output).

ProjectName
(string)
The name of the project which developped the simulation engine.

Comment (string)
The comment about the file.

3.7 Records

Sometimes we need to use sequential data sets or similar data sets. The record block
can be used for such a purpose.

def {
n: int
t: double

}

record "record 0" {
data {

n: 0
t: 0.0

}
}

record "record 1" {
data {

10 eXtended User Definable Format

n: 1
t: 0.5

}
}

record "record 2" {
data {

n: 2
t: 1.0

}
}

In this XUDF, we have three record blocks. Each record block has the data block.
The value in the data block in the record block refers the same variable, but they are
isolated and distinguished by the record identifier.

The record definition is as follows.
record "record_identifier" {

data {
name: value

...
}

}

where "record identifier" is an identifier which distinguishes records.

Chapter 4: The XUDF Preprocessor (xudfpp) 11

4 The XUDF Preprocessor (xudfpp)

4.1 Overview of the XUDF preprocessor (xudfpp)

The XUDF preprocessor, xudfpp is the preprocessor for the OCTA UDF and the XUDF
files. It processes the backslashed command (for example, \begin{def} ... \end{def})
into the plain XUDF format (in this case, def { ... }). It also remove the comments (/*
... */ and // ...) and processes some ambiguous / inappropriate OCTA UDF syntax into
the strict XUDF sytax. It is useful to convert the OCTA UDF files into the XUDF files, or
use some macro expansions for the XUDF.

In most cases, the users do not need to invoke xudfpp directly. Just like the C pre-
processor cpp, xudfpp will be called from the other programs, automatically. The OCTA
UDF to Perl / Python / Ruby / Lua converters (udf2pl, udf2py, udf2rb, udf2lua) call
xudfpp automatically.

4.2 Introduction to (xudfpp)

Currently, xudfpp supports only some simple macro expansions. The most useful expan-
sion is one for \begin{...} ... \end{...} block normally used in the OCTA UDF files
(the OCTA UDF uses these syntax to define blocks such as the data block or the definition
block). xudfpp processed \begin{...} ... \end{...} blocks into the XUDF blocks. For
example, the OCTA UDF file

// OCTA UDF input

\begin{def}
a: double
b[]: int

\end{def}

\begin{data}
a: 1.23
b[]: [4, 5, 6]

\end{data}

will be converted to the following XUDF file.

def {
a : double
b [] : int
}

data {
a : 1.23
b [] : [4 5 6]
}

12 eXtended User Definable Format

As expressed, several parts are processed. First, the comment at the first line is removed.
Second, the \begin{...} ... \end{...} block is converted into the XUDF block syntax,
Third, the commas in array data (b) is removed (because the XUDF do not allow commas
there).

Next we show the useful macro expansion. You can define constant value as a new macro
command, using \definie{...}{...} syntax. The first argument for \define corresponds
to the new macro identifier and the second argument corresponds to its value. The simple
example is as follows.

\define{pi}{3.141592}

def {
a: double
b: {

c: double
d: double

}
}

data {
a: \pi
b: {

1.234
\pi

}
}

The new macro command, \pi, will be expanded into 3.141592 defined in the first line.

def {
a : double
b : {
c : double
d : double
}
}

data {
a : 3.141592
b : {
1.234
3.141592
}
}

4.3 Invoking xudfpp

The format for running the xudfpp program is:

Chapter 4: The XUDF Preprocessor (xudfpp) 13

$ xudfpp [input] [output] option ...

The input file (input) and the output file (output) can be specified. If both files are
specified, xudfpp uses them as the input/output files. If only one file (input) is specified,
xudfpp takes it as the input file and print the processed data into the standard output
stream. If no file is specifled, xudfpp reads data from the standard input stream and then
process it and print into the standard output stream.

xudfpp supports the following options:

-I directory

Add the directory directory to the head of the list of directories to be searched
for header files. If you use more than one -I option, the directories are scanned
in left-to-right order.

-D name Define the name name as a macro with null string.

-D name=definition
Define the name name as a macro with definition definition. Currently, xudfpp
does NOT permit the override of macro definitions, and once the macro with a
name name is defined, it cannot be redefined or removed.

--help
-h Show summary of options.

--version
-v Show version of program.

4.4 Macro Processing by xudfpp

4.4.1 \begin{...} and \end{...} (blocks)

The OCTA UDF type block, begins with \begin{...} and ends with \end{...} is
processed into the XUDF block.

The \begin part,

\begin{type}

is processed into

type {

unless the type is record or global_def. For the record block,

\begin{record}{"record_identifier"}

is processed into the following form.

record "record_identifier" {

For the global_def block,

\begin{global_def}

is processed into the following form.

14 eXtended User Definable Format

global {

This is because the XUDF do not support global_def block (instead, the global block
is used).

The \end part,

\end{type}

is simply replaced by

}

4.4.2 \include{...} (inclusion of file)

The \include syntax, sometimes used in the OCTA UDF, is processed as follows. The
\include syntax,

\include{"file_to_include"}

is removed by the xudfpp. xudfpp then opens the file named file to include and processes
it. If the processing of the opend file (file to include) is completed (if the xudfpp reaches
the end of the file), xudfpp continues to process the original file.

4.4.3 \define{...}{...} (macro definition)

The \define syntax, which is newly introduced to the xudfpp, defines new macros.

\define{identifier}{value}

defines new macro command, \identifier . the new command \identifier is expanded
into the value, value. The \define syntax itself is removed by the xudfpp.

The new macro command can be used wherever, once it is defined.

\identifier

is expanded into

value

Note that the redefinition and the removal of the macro is not supported currently. Once
the macro is defined, all the following new macro definition is expanded.

4.4.4 <KEY> and <ID> (variable types)

The OCTA UDF supports two special variable types, <KEY> and <ID> (though they are
not often used). The XUDF does not support such a syntax, thus the xudfpp removes <
and >. That is, the variable type definition including < and >

<type>

is processed into the following form.

type

Chapter 4: The XUDF Preprocessor (xudfpp) 15

4.4.5 , (commas)

In the OCTA UDF, commas are allowed to be used as the separator for data. The
XUDF do not support these ambiguous syntax and xudfpp removes these commas. The
array definition with commas

[element1, element2, element3, element4, ...]

is processed into the array definition which do not contains commas.
[element1 element2 element3 element4 ...]

4.4.6 /* ... */ and // ... (comments)

The C style comments and the C++ style comments are removed by the xudfpp.
The C comment begins with /* and ends with */.

/* comments ...

...

...

... */

The xudfpp removes it.
The C++ comments begnis with // and ends with the end of the line.

// comments ...

The xudfpp removes it, too.

16 eXtended User Definable Format

Chapter 5: The XUDF to Script Language Converter (xud2pl,xudf2py,xudf2rb,xudf2lua)17

5 The XUDF to Script Language Converter
(xud2pl,xudf2py,xudf2rb,xudf2lua)

5.1 Overview of the XUDF to Script Language Converter
(xudf2pl,xudf2py,xudf2rb,xudf2lua)

The XUDF to script language converter (xudf2pl,xudf2py,xudf2rb,xudf2lua) con-
verts the XUDF files into some popular script language files. The XUDF files cannot be
handled directly from programs, and the converter is useful to use the XUDF files as the
input of the programs.

Currently there are 4 languages supported by the XUDF – Perl, Python, Ruby and Lua.
The XUDF files processed by the converter have the data as the hash table (this may be
called as dictionary or associated list, in some languages).

It is noted that the XUDF to script language converter does NOT use the xudfpp
automatically. If you want the data processed by the xudfpp automatically, use the UDF
to script language converter (udf2pl, udf2py, udf2rb, udf2lua) instead. It preprocesses
and converts the input file into the script language file.

5.2 Introduction to the XUDF to Script Language
Converter

The 4 lauguages (Perl, Python, Ruby and Lua) is supported currently. In this section,
we show the conversion of the simple XUDF file into the Perl script. The following is the
example input XUDF file.

def {
r: {

x: double
y: double
z: double

}
a: {

b: int
c[]: double

}
}

data {
r: {

1.0
2.0
3.0

}
a: {

1.23
[45 67 89]

18 eXtended User Definable Format

}
}

If we convert it by using xudf2pl, we get the following perl script as output.
generated by xudf2pl

%record = ();

%data = (
"r" => { "x" => 1.0, "y" => 2.0, "z" => 3.0, },
"a" => { "b" => 1.23, "c" => [45, 67, 89,],
},
);

Here the variable %data is the hash table which contains all the data in the input XUDF
file. It has the same structure as the input XUDF file. For example, The variables r and
a in the input XUDF is the structure type, and they are the structured variable (strictly
speaking, it is the hash table) in the output Perl script. The array variable c is also expressed
as the array in the output Perl script.

To access these variables from Perl, first evaluate the output Perl script. Then these
variables are stored in the memory and are accessible from Perl. For example, the following
script print the variables r.x and a.c[0] in the output Perl script (output.pl)

#!/usr/bin/perl

require ’output.pl’;

print $data{"r"}{"x"},"\n";
print $data{"a"}{"c"}[0],"\n";

If you use the other converters (xudf2py,xudf2rb,xudf2lua), the resulting output is
each script language, and it can be handled just like the case of Perl.

For Python, the output script converted by xudf2py is
generated by xudf2py

record = {}

data = {
’r’ : { ’x’ : 1.0, ’y’ : 2.0, ’z’ : 3.0, },
’a’ : { ’b’ : 1.23, ’c’ : [45, 67, 89,],
},
}

and the script which print the variables r.x and a.c[0] is as follows.
#!/usr/bin/python

from output import *

print data["r"]["x"]
print data["a"]["c"][0]

Chapter 5: The XUDF to Script Language Converter (xud2pl,xudf2py,xudf2rb,xudf2lua)19

For Ruby, the output script converted by xudf2rb is

generated by xudf2rb

record = {}

data = {
"r" => { "x" => 1.0, "y" => 2.0, "z" => 3.0, },
"a" => { "b" => 1.23, "c" => [45, 67, 89,],
},
}

and the script which print the variables r.x and a.c[0] is as follows.

#!/usr/bin/ruby

load "output.rb"

print $data["r"]["x"]
print $data["a"]["c"][0]

For Lua, the output script converted by xudf2lua is

-- generated by xudf2lua

record = {}

data = {
r = { x = 1.0, y = 2.0, z = 3.0, },
a = { b = 1.23, c = { 45, 67, 89, },
},
}

and the script which print the variables r.x and a.c[0] is as follows.

#!/usr/bin/lua

loadfile("output.lua")()

print(data.r.x)
print(data.a.c[1])

Note that the array index of Lua starts from 1, not 0.

5.3 Invoking xudf2pl,xudf2py,xudf2rb,xudf2lua

The format for running the xudf2pl,xudf2py,xudf2rb,xudf2lua program is:

$ xudf2pl [input] [output] option ...
$ xudf2py [input] [output] option ...
$ xudf2rb [input] [output] option ...
$ xudf2lua [input] [output] option ...

20 eXtended User Definable Format

The input file (input) and the output file (output) can be specified. If both files are
specified, the converter uses them as the input/output files. If only one file (input) is
specified, the converter takes it as the input file and print the processed data into the
standard output stream. If no file is specifled, the converter reads data from the standard
input stream and then process it and print into the standard output stream.

xudf2pl,xudf2py,xudf2rb,xudf2lua supports the following options:

--help
-h Show summary of options.

--version
-v Show version of program.

Chapter 6: The UDF to Script Language Converter (ud2pl,udf2py,udf2rb,udf2lua) 21

6 The UDF to Script Language Converter
(ud2pl,udf2py,udf2rb,udf2lua)

6.1 Overview of the UDF to Script Language Converter
(udf2pl,udf2py,udf2rb,udf2lua)

The UDF to script language converter (udf2pl,udf2py,udf2rb,udf2lua) converts the
OCTA UDF files into script language files. It is the wrapper script which processes the
input file by using xudfpp and then convert it with xudf2pl,xudf2py,xudf2rb,xudf2lua.

It is convenient to use the converter to read your OCTA UDF files from your programs
or process the data in the OCTA UDF files by script languages.

6.2 Introduction to the UDF to Script Language Converter

The 4 lauguages (Perl, Python, Ruby and Lua) is supported currently (this is the same
as the XUDF to script language converter). In this section, we show the conversion of the
simple UDF file into the Perl script, as shown in the XUDF converter case. The following
is the example input OCTA UDF file.

\begin{def}
r: {

x: double
y: double
z: double

}
a: {

b: int
c[]: double

}
\end{def}

\begin{data}
r: {

1.0,
2.0,
3.0

}
a: {

1.23,
[45, 67, 89]

}
\end{data}

This OCTA UDF file has the same data as the XUDF file shown in the XUDF section.
If we convert it by using xudf2pl, we get the following perl script as output.

generated by xudf2pl

22 eXtended User Definable Format

%record = ();

%data = (
"r" => { "x" => 1.0, "y" => 2.0, "z" => 3.0, },
"a" => { "b" => 1.23, "c" => [45, 67, 89,],
},
);

Here the variable %data is the hash table which contains all the data in the input XUDF
file. It has the same structure as the input XUDF file. For example, The variables r and
a in the input XUDF is the structure type, and they are the structured variable (strictly
speaking, it is the hash table) in the output Perl script. The array variable c is also expressed
as the array in the output Perl script.

To access these variables from Perl, first evaluate the output Perl script. Then these
variables are stored in the memory and are accessible from Perl. For example, the following
script print the variables r.x and a.c[0] in the output Perl script (output.pl)

#!/usr/bin/perl

require ’output.pl’;

print $data{"r"}{"x"},"\n";
print $data{"a"}{"c"}[0],"\n";

If you use the other converters (xudf2py,xudf2rb,xudf2lua), the resulting output is
each script language, and it can be handled just like the case of Perl.

For Python, the output script converted by xudf2py is
generated by xudf2py

record = {}

data = {
’r’ : { ’x’ : 1.0, ’y’ : 2.0, ’z’ : 3.0, },
’a’ : { ’b’ : 1.23, ’c’ : [45, 67, 89,],
},
}

and the script which print the variables r.x and a.c[0] is as follows.
#!/usr/bin/python

from output import *

print data["r"]["x"]
print data["a"]["c"][0]

For Ruby, the output script converted by xudf2rb is
generated by xudf2rb

record = {}

Chapter 6: The UDF to Script Language Converter (ud2pl,udf2py,udf2rb,udf2lua) 23

data = {
"r" => { "x" => 1.0, "y" => 2.0, "z" => 3.0, },
"a" => { "b" => 1.23, "c" => [45, 67, 89,],
},
}

and the script which print the variables r.x and a.c[0] is as follows.
#!/usr/bin/ruby

load "output.rb"

print $data["r"]["x"]
print $data["a"]["c"][0]

For Lua, the output script converted by xudf2lua is
-- generated by xudf2lua

record = {}

data = {
r = { x = 1.0, y = 2.0, z = 3.0, },
a = { b = 1.23, c = { 45, 67, 89, },
},
}

and the script which print the variables r.x and a.c[0] is as follows.
#!/usr/bin/lua

loadfile("output.lua")()

print(data.r.x)
print(data.a.c[1])

Note that the array index of Lua starts from 1, not 0.
The UDF to script language converter can handle the XUDF files as input, too. This

is because the converter uses xudfpp to process the input file. We get the XUDF files by
processing the OCTA UDF files as well as the XUDF files.

6.3 Invoking udf2pl,udf2py,udf2rb,udf2lua

The format for running the udf2pl,udf2py,udf2rb,udf2lua program is:
$ udf2pl [input] [output] option ...
$ udf2py [input] [output] option ...
$ udf2rb [input] [output] option ...
$ udf2lua [input] [output] option ...

The input file (input) and the output file (output) can be specified. If both files are
specified, the converter uses them as the input/output files. If only one file (input) is
specified, the converter takes it as the input file and print the processed data into the

24 eXtended User Definable Format

standard output stream. If no file is specifled, the converter reads data from the standard
input stream and then process it and print into the standard output stream.

udf2pl,udf2py,udf2rb,udf2lua supports the following options:

-I directory

Add the directory directory to the head of the list of directories to be searched
for header files. If you use more than one -I option, the directories are scanned
in left-to-right order. This option is passed to xudfpp.

-D name Define the name name as a macro with null string. This option is passed to
xudfpp.

-D name=definition
Define the name name as a macro with definition definition. Currently, xudfpp
does NOT permit the override of macro definitions, and once the macro with a
name name is defined, it cannot be redefined or removed. This option is passed
to xudfpp.

--help
-h Show summary of options.

--version
-v Show version of program.

Chapter 7: Complete Syntax for XUDF 25

7 Complete Syntax for XUDF

The syntax for the XUDF in the extended Backus-Naur format (EBNF) is shown in
this section. Note that this syntax may contain bug, because currently the XUDF parser is
written by hand without yacc and thus actually the following EBNF is not directly used.

xudf-file = { block }

block = def-block
| global-block
| data-block
| header-block
| unit-block
| record-block

header-block = ‘header’ ‘{’ { header-sub-block } ‘}’
header-subblock = def-block

| data-block

record-block = ‘record’ ‘[’ string ‘]’ ‘{’ { data-block } ‘}’

def-block = ‘def’ ‘{’ { type-definition [type-unit-definition] } ‘}’
type-definition = primitive-definition

| struct-definition
| class-definition

type-unit-definition = ‘[’ specifier ‘]’
primitive-definition = variable-name ‘:’ specifier
variable-name = specifier { ‘[’‘]’ }
struct-definition = variable-name ‘:’ ‘{’ { struct-element-defintion } ‘}’
struct-element-definition = primitive-definition

| struct-definition
class-definition = ‘class’ specifier ‘:’ ‘{’ { struct-element-defintion } ‘}’

global-block = ‘global’ ‘{’ { type-definition [type-unit-definition] } ‘}’

data-block = ‘data’ ‘{’ data-definition ‘}’
data-definition = { specifier ’:’ data-value }
data-value = number

| string
| struct-value
| array-value

struct-value = ‘{’ { data-value } ‘}’

26 eXtended User Definable Format

array-value = ‘[’ { data-value } ‘]’

unit-block = ‘data’ ‘{’ { unit-definition } ‘}’
unit-definition = unit-constant-definition

| unit-unit-definition
unit-constant-definition = specifier ‘=’ number
unit-unit-definition = ‘[’ specifier ‘]’ ‘=’ [number] ‘[’ unit-complex ‘]’
unit-complex = unit

| number
| ‘(’ unit-complex ‘)’
| unit-complex unit-operation unit-complex
| unit-complex ’^’ number

unit-operation = ‘+’
| ‘-’
| ‘*’
| ‘/’

letter = ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’
| ‘i’ | ‘j’ | ‘k’ | ‘l’ | ‘m’ | ‘n’ | ‘o’ | ‘p’
| ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’
| ‘y’ | ‘z’
| ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’
| ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’
| ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’
| ‘Y’ | ‘Z’

digit = ‘0’ | nonzero-digit
nonzero-digit = ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’

| ‘9’

sign = ‘+’
| ‘-’

exponent = ’e’
| ’E’

integer = [sign] nonzero-digit { digit }
float = [sign] nonzero-digit { digit } ’.’ { digit } [sign exponent { digit }]

| [sign] ’0’ ’.’ { digit } [sign expontent { digit }]
number = integer

| float

specifier = specifier-starter { specifier-continuer }
specifier-starter = letter

| ’_’
specifier-continuer = specifier-starter

| digit

Chapter 7: Complete Syntax for XUDF 27

character = letter
| digit
| ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘!’ | ‘#’ | ‘$’ | ‘%’
| ‘&’ | ‘’’ | ‘(’ | ‘)’ | ‘{’ | ‘}’ | ‘[’ | ‘]’
| ‘~’ | ‘^’ | ‘‘’ | ‘@’ | ‘;’ | ‘:’ | ‘<’ | ‘>’
| ‘,’ | ‘.’ | ‘_’ | ‘?’

escape-sequence = ’\’ character
| ’\’ ’\’
| ’\’ ’"’

string = ‘"’ { string-character } ‘"’
string-character = character

| escape-sequence

28 eXtended User Definable Format

GNU GENERAL PUBLIC LICENSE 29

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

30 eXtended User Definable Format

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 31

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

32 eXtended User Definable Format

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 33

11. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

34 eXtended User Definable Format

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

GNU GENERAL PUBLIC LICENSE 35

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

36 eXtended User Definable Format

Concept Index 37

Concept Index

C
converter . 17, 21

H
help . 12, 19, 23

I
install . 3
introduction . 1
invoking . 12, 19, 23

O
options . 12, 19, 23

P
preprocessor . 11

S
syntax . 25

U
udf2lua . 21
udf2pl . 21
udf2py . 21
udf2rb . 21
usage . 12, 19, 23

V
version . 12, 19, 23

X
xudf2lua . 17
xudf2pl . 17
xudf2py . 17
xudf2rb . 17
xudfpp . 11

38 eXtended User Definable Format

	Introduction
	Install xudf
	About XUDF (eXtended User Definable Format)
	Primitive Data Types
	Definition and Value of Variables
	Arraies and Structures
	Class Definitions
	Select Definitions
	Headers
	Records

	The XUDF Preprocessor (xudfpp)
	Overview of the XUDF preprocessor (xudfpp)
	Introduction to (xudfpp)
	Invoking xudfpp
	Macro Processing by xudfpp
	{@tt @rawbackslashxx }begin{@tt @char 123}...{}{@tt @char 125} and {@tt @rawbackslashxx }end{@tt @char 123}...{}{@tt @char 125} (blocks)
	{@tt @rawbackslashxx }include{@tt @char 123}...{}{@tt @char 125} (inclusion of file)
	{@tt @rawbackslashxx }define{@tt @char 123}...{}{@tt @char 125}{@tt @char 123}...{}{@tt @char 125} (macro definition)
	<KEY> and <ID> (variable types)
	, (commas)
	/* ...{} */ and // ...{} (comments)

	The XUDF to Script Language Converter (xud2pl,xudf2py,xudf2rb,xudf2lua)
	Overview of the XUDF to Script Language Converter (xudf2pl,xudf2py,xudf2rb,xudf2lua)
	Introduction to the XUDF to Script Language Converter
	Invoking xudf2pl,xudf2py,xudf2rb,xudf2lua

	The UDF to Script Language Converter (ud2pl,udf2py,udf2rb,udf2lua)
	Overview of the UDF to Script Language Converter (udf2pl,udf2py,udf2rb,udf2lua)
	Introduction to the UDF to Script Language Converter
	Invoking udf2pl,udf2py,udf2rb,udf2lua

	Complete Syntax for XUDF
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	Concept Index

